Engineered Nanomaterials and Public Health

- The Nano Scale
- ENM in the US and CCC
- Product Lifecycle
- Biological Effects/Toxicity
- Regulatory landscape
- Data Gaps and Uncertainties
- Summary and Opportunities

This presentation was supported by Cooperative Agreement Number NU61TS000278-01 from the Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry. Its contents are solely the responsibility of the author and do not necessarily represent the official views of The Centers for Disease Control and Prevention. This presentation was approved by CDPH.
The Nano Scale

Nano Materials (Ultrafine PM: < 100 nm)

<table>
<thead>
<tr>
<th>Naturally occurring</th>
<th>Incidental</th>
<th>Engineered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ocean spray</td>
<td>combustion</td>
<td>designed</td>
</tr>
<tr>
<td>friction</td>
<td>laser printers</td>
<td>properties/</td>
</tr>
<tr>
<td>erosion</td>
<td>welding</td>
<td>functions</td>
</tr>
</tbody>
</table>

Nano fibers: Pollen, Human Hair

www.elmarco.com

nano range
ENM: Unique Properties...due to Quantum Effects

- Nano properties ≠ macro properties
- Surface area / gram
 (VERY large!)
- Size, size distribution
- Shape
 (tubes, rods, wires, spheres, sheets, ...)
- Composition
 (organic, metal, hybrid)
- Surface modification
 (charge, hydrophilic, lipophilic, magnetic, ...)
- Agglomeration
- Protein corona

... leading to amazing applications of ENMs, including public health applications! We all want the benefits of this technology..... but not the unintended consequences.

http://www.jianghutio2.com
Engineered Nano Materials in the US (estimates!)

Nano materials produced in US
(metric tons/yr, 2010, low and high estimates)

- Copper
- Silver
- Carbon Nano Tubes
- Cerium oxide
- Nano clays
- Aluminium oxide
- Zinc oxide
- Iron
- Silicon dioxide
- Titanium dioxide

US: 50% of world-wide production US
Total production is in US:
134,000 – 158,000 tons/yr

Major uses
> 1600 consumer products
> 487 construction products

- Coatings, paints, pigments (textiles)
- Personal care products
- Electronics, optics
- Energy, environment
- Catalysts
- Automotive
- Medical

Sources:
http://www.nanotechproject.org/
http://www.nano.elcosh.org
Exposures to humans & releases into the environment: UNKNOWN!

- Raw materials
- Development, production of ENM
- Transportation, storage; manufacturing of nano-enabled products
- Worker’s exposure
- Consumer exposure
- End-of-life, recycling, Incineration, landfill, waste water, env. fate
- Consumer use, releases from aging products, by-products
Accidental Release

Nano TiO2 spill, France, 2011
Each bag 1500 lb of nano TiO2

Source: Nowack et al, Env. Sciences Europe, 2014, 26:2
ENM: Observed Biological Effects

- **Local**
 Absorption through membranes, accumulation in lung

- **Systemic**
 Translocation, blood-brain barrier, placenta, reproductive effects

- **Acute**
 Reactive Oxygen Species, inflammation, mutations

- **Chronic**
 Animal studies: fibrosis (CNT); asbestos-like effects, possibly carcinogenic to humans (IARC – 2B); lung tumors (TiO₂); in vitro: transformation of lung cells
ENM: Difficulties in Assessing Toxicity

- Nano toxicity ≠ macro toxicity
- Few standard methods
- Dose metrics (NOT mg/kg bodyweight): reactivity, surface area, particle number, …?
- Appropriate toxic endpoints?
- Impurities, endotoxins in commercial ENM
- Poor reproducibility of published research
- Lack of published negative data
- ID worker cohorts?
- ID Sensitive Subpopulations?

Krug et al., 2014: Are we on the right track?
Regulatory Landscape

No legal framework specific to nano-scale materials

- Feds **regulate by product**: chemicals, consumer products, pesticides, foods, drugs, medical devices, cosmetics, hazardous waste, etc.
- **Definitions** do not differentiate between nano- and “regular” chemicals.
- Example of federal law: **Toxic Substances Control Act**
 Update on Reporting Rules (5/12/2017)?
- Local level? Worker’s RtK? Community RtK?

NIOSH Guidance:
- REL nano TiO$_2$: 300 µg/m3 (potential occ. carcinogen)
- REL CNT/CNF: 1 µg/m3 (effects similar to asbestos)
 (REL: Recommended Exposure Limit)

DoE: Registry for nano workers (DoE O 456.1)
ENM: Data gaps and uncertainties!

- Unknown releases into the environment during Lifecycle
- Little discussion of ENM in public health field/funding?
- No location of ENM facilities
- Little knowledge of worker cohorts
- Poor reproducibility of published data
- Lack of published negative data
- Little information on Environmental Fate and Transport
- Unknown exposures to general public
- Few useful Safety Data Sheets
- Commercial ENM may contain impurities, endotoxins
- Lack of risk communication
- Few standard methods
Summary and Opportunities

- Great potential for beneficial uses!
- Large gaps in data, knowledge, infrastructure, especially toxicology, environmental fate
- Increasing number of products
- Unknown exposures to consumers and workers
- Unknown releases into the environment

Unknown consequences for Public Health

Opportunities for local activities:
- Identify local facilities and exposed populations
- Prepare locally (emergency response, Workers RtK, Community RtK)
- Communicate with public

Thank you!

Contact: Gabriele.Windgasse@cdph.ca.gov

Acknowledgements: I want to thank all members of the CDPH NanoGroup, especially Rick Kreutzer
ENM Resources

- Nano EHS: Communities of Research: www.us-eu.org
- National Nanotechnology Initiative: www.nano.gov
- NIOSH: http://www.cdc.gov/niosh/topics/nanotech/
- NIOSH: Good NanoGuide: https://nanohub.org/groups/gng
- USEPA: http://www.epa.gov/chemical-research/research-evaluating-nanomaterials-chemical-safety
- Woodrow Wilson Center: www.nanotechproject.org/
- Nanomaterial Registry: https://www.nanomaterialregistry.org/